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Using a technique based essentially on group theory and an ansatz inspired by the old instanton
analysis, we obtain a simplified set of differential equations expressing self-duality for eight-
dimensional gauge theories with an SO(8) gauge group. We obtain explicit solutions, some of which,
with spherical symmetry, have finite action for a theory defined by a Lagrangian of higher order.

I. INTRODUCTION

Recently, increased attention has been focused on gauge
theories in higher-dimensional spaces. First! natural ex-
tensions of the four-dimensional case were sought for the
Lagrangian (u=1,...,d)

L=5Tr(F,,F,,) (1.1)

with
D”=a“+A# , (1.2a)
F,.;v:[D,u’Dv] . (1.2b)

In Eq. (1.1) the trace is understood for the gauge indices.
As usual the equations of motion are

[D/J,’va]zo (1.3)

'and the Bianchi identities are

(4
Z[DM,FVP]=O .
wp

(1.4)

In (1.4) the sum extends on the cyclic (¢) permutations of
the three indices.

It was immediately shown that the four-dimensional
self-duality (p==%1)

va=l27_€;wpo~Fpo (1.5)
could be extended in the secular equation
)"Fuv:T;wpana > (1.6)

where the numerical tensor 7 is completely antisymmetri-
cal and A is an eigenvalue. Equations (1.5) and (1.6),
which are linear relations among the F’s, guarantee that
the equations of motion are satisfied as a consequence of
the Bianchi identities [see Egs. (A1)—(A7) in the Appen-
dix as an example]. A

It was realized that the case of eight dimensions (d =8)

32

is of particular interest. Spinors and vectors have the
same dimension and T can be invariant under an SO(7)
subgroup with the vector of SO(8) behaving as an eight-
dimensional spinor of SO(7). Unfortunately, as expected,
the solutions of (1.6), and in particular the spherically
symmetric solutions® tend to produce F’s which behave as
the inverse of r? at infinity and hence lead to infinite ac-
tion.

Another generalization of self-duality can be pro-
posed™>* for spaces of dimension 4n. Introduce

Kq,...qp =3 sgn(PDy - D, (1.7)
P

where the sum extends over all the permutations of the
a’s and sgn(P) is the sign of the permutation. Clearly K
is a function of degree n in the fields F in (1.2b). Defin-
ing the dual of K by

1

Kal ey, = Ei—!—ea‘ ey, gt a4nKa2"+1 e ay, (1.8)
self-duality now reads
Ko..aqp =1Kg ...q - (1.9)
If the Lagrangian is taken to be*
1
L= Yo Tr(Ky, .. 0y, Koy - ay,) > (1.10)

and F behaves in its normal inverse r? law one may ex-
pect the action to be marginally convergent.

The equations of motion which follow from (1.10) are
quite interesting. Indeed defining

n—1 .
RaB=kZOFa1“2Fa3“4 T F“Zk—laszaﬁalaz L P )

F

%n—3%n -2

XF, (1.11)

2k +1%2k +2

the equations of motion are equivalent to
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[Dg,Ra5]=0. (1.12)

These equations are physically acceptable since the start-
ing Lagrangian is at most quadratic in any derivative. Be-
cause of the complete antisymmetry of K and the Bianchi
identities (1.4), the equations of motion are also

n—1

kgoFalaz v Fay_jaylDarKapa, - ay, )

X F, 0. (1.13)

.« F —
2k +1%2k +2 @on —3%p 2

Hence

[Dq,:Kq, - a,,1=0 - (1.14)
are sufficient conditions (but not necessary) to fulfill the
equations of motion. Finally it is clear that self-duality
(1.9) is even a stronger sufficient condition.

A weaker condition can be obtained as follows. Let R
be defined by a formula analogous to (1.11) with K re-
placed by K. The sufficient condition is

ARup=Rag , (1.15)

where A is an arbitrary ¢ number.

In what follows we will analyze the self-duality equa-
tions (1.9) in eight dimensions (n =2) and for a gauge
group SO(8) with an ansatz inspired by the old four-
dimensional instanton analysis, the so-called Corrigan-
Fairlie-Wilzcek ansatz. In particular we will obtain
spherically symmetric solutions with finite action (1.10)
and simple generalizations thereof. A few comments will
be made on the seemingly less restrictive sufficient condi-
tions (1.15).

II. SO(8) GAUGE THEORY
IN EIGHT DIMENSIONS

In order to study the formally spherically symmetric
equations for an SO(8) gauge theory in eight dimensions,
let us recall that there are three nonequivalent eight-
dimensional representations of SO(8) labeled, respectively,
by V, W, and X, namely, the vector representation
(i,j,aB=1,...,8)

Vig=58.5h—5.55 @2.1)
and two spinor representations conveniently written in

terms of the A and Q matrices defined in the Appendix
and which were introduced before? (4,B=1,...,7):

ij AB
Wip=9; ,

(2.2a)
Wis=Aj
or
X=04",
g (2.2b)
X;"lg == —A{; .

These three representations satisfy evidently the commu-
tation relations

[VaB’ V78]=gﬁy Va& +8as VB’y —8ay VBG —8p5 Var . (2.3)
Formally the potentials 4 for an SO(8) gauge theory in

eight dimensions, if. spherical symmetry is imposed,
behave as

A : 28X 8, =8, +56,+160y , 2.4)

where by definition p (u=1,...,8) transforms with the
vector representation and ij (i,j =1, ..., 8) are the SO(8)
antisymmetric gauge indices (the adjoint 28-dimensional
representation).

In analogy with the Corrigan-Fairlie-Wilzcek ansatz, it
is tempting to use, in (2.4), only the vector part and write

Al=wid,np . (2.5)

Let us remark that we have used a spinor-type connection
between the SO(8) i,j indices and the vector indices w,v.
It can be checked easily that using V in (2.1) instead of W
in (2.2a) leads to nothing as interesting. The roles of X in
(2.2b) and W in (2.2a) can be exchanged with essentially
no new result.
From the ansatz (2.5), the F’s can be computed to be

Fi,=F'Wi, +WiFs _wiFys, (2.6)
where F! is a singlet and F3 a 35, symmetrical tensor of
Zero trace:

F'=—4[8,3,lnp+3(3,lnp)(3,Inp)] , @.7)
Fl3=(3,Inp)(dglnp) —3,dglnp
— 5845 (3,1np)(3,Inp) —3,3,Inp] . (2.8)

Let us remark that in general a spherically symmetric F
behaves as

Flg : 28X 28=1428+35,+ 35, + 355 +300+350
2.9)

and the ansatz (2.5) has restricted the allowed terms to a

singlet and a 35y.
Analogously, K in (1.7) which here can be written

s C Py
KZB}’SZ 2 [FaB)F‘yS]’—j% (2.10)
Brd

behaves as a 1+35y in ij and as a 35, 4+ 35 in af3y6,
i.e.,, the decomposition of the reducible 70-dimensional
completely antisymmetric representation in its self-dual

35, and anti-self-dual pieces 35y. Hence for the self-
dual part

Ksp: (1435, ) X35y
=35y +1+28+35, 4294, +300+567y (2.11a)
and for the anti-self-dual part
Kasp: (1+35y5) X355y =355 +35,,4+350+ 840, .
(2.11b)

Upon inspection we can make the crucial remark that all
representations belonging to -the self-dual and anti-self-
dual parts are different.

Finally before solving the equation for our ansatz let us
note for completeness that the R tensor (1.11) becomes
here
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Rig=[F,5,Kapys1" (2.12)

with a spherically symmetric behavior identical to that of
F in (2.9). The index content of R is identical to that of
R.

III. SPHERICALLY SYMMETRIC SOLUTIONS

We will now study self-duality (1.9) for our ansatz (2.5)
in general and then apply our results to full spherical
symmetry, i.e., when p is restricted to depend only on

r’=¥x,*. 3.0
I

Before turning to the explicit equation let us note that,
since K is constructed out of the symmetrized product of
two F’s in (2.10), which themselves are built out of a sing-
let (F') and a 35 (F3%), there can appear only the follow-
ing representations in K:
|

3 5
ﬁFaB, >35=Fj,F3 -8 BF>‘
300 3
Fpys =2F 5pF 33— —F2FR+

+ E 28a38,,5— 8a58,g,, — 6‘1},838)17 >1 .

zaaﬁﬁv>35+28‘r&F>35__ a5F>35

(F12:1
K : F'x<F% :35,, (3.2)
(FB¥XF%)g : 1435,+294,,+300 .

Comparing with the allowed content (2.11) we see that
294, cannot be present and that the 1’s and the 300 are
self-dual while the 35,’s are anti-self-dual.

Solutions of the self-duality equations will thus be ob-
tained by equating to zero either the 1 and the 300 (lead-
ing to an anti-self-dual solution) or the 35, (leading to a
self-dual solution). After some algebra one obtains the
equations which follow.

Let us denote by F> the tensors obtained in squaring
F3. The relevant pieces behaving as a singlet, a 35, and
a 300 are as follows (the allowed 294, has not been ex-
plicitly written down since it does not play any role in the
analysis):

8,6F %" —8ayF s> —8psF 2y”) (3.3)

With the use of the Clebsch-Gordan coefficients given in the Appendix, K can be written [see (A9)—(A12)]

K5 =Sp,s[(F') — 55 F> 1+ QU5 po (F'F oy —

Recalling the definitions (2.7), (2.8), and (3.3) the equa-
tion of self-duality now becomes

FIFY—+F23° =0 (3.5)
leading to self-dual solutions or
(F'2—4F>'=0, F23%=0, (3.6)

which together lead to anti-self-dual solutions.

Instead of trying to solve these equations in general let
us restrict ourselves to the truly spherically symmetric
case where p depends only on r2. Let the prime be the
derivative with respect to r2. Then from (2.7)

Fl'=—(r’pp" +4pp' +2p" r¥)p~2, 3.7

Fip=4(—pp"+2p' p~2x0p (3.8)
with

xa3=xax,g——%r28aﬁ . (3.9)

From these, F> can be computed easily. Since the repre-
sentation 300 has the symmetry of the Young tableau
(2.2), it is identically zero (no antisymmetrical tensor can
be obtained from the commuting x’s). One obtains

F>l=l4( __ppu+2p12)2p—4r4 ,
(3.10

12)2 2

F>35—12( pr

—pp"+2p

The self-duality equation (3.5), proportional to the tensor
(3.9), leads (up to a factor — 1) to

TF2) 4 Tlgys pouF popis - (34

I

(—pp" +2p" N p+p'ri)p'p~*=0 (3.11)

while the anti-self-duality (3.6) gives (up to a factor +)

(p"r*+2p"Np+p'r*)pp~>=0. 3.12)

In (3.11) and (3.12) there are two trivial solutions: first
when p’=0 the A4 potentials (2.5) are identically zero and
the solution is trivial, then when the second factor van-
ishes

(3.13)

K is identically zero, the fields F are also zero but A4 is
nonzero

Af=— W;{v2x,,r“2

p+p'r?=0.

(3.14)

The interesting cases are obtained when the first factor
in (3.11) or in (3.12) vanishes. In the case of self-duality
the solution for p is

p=(cr’4+d)™! (3.15)
which leads to (with =d /c)

Al =—wl2x,(r?*+6)71, (3.16a)
Fil,=wi,40(r*+0)72, (3.16b)
Ko =1655,,,6%(r*+6)7*. (3.16¢)

In the case of anti-self-duality the solution for p is.
p=(c+dr¥)r? (3.17)
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which leads to (with 8=d /c¢)

A= —wix (0r* 4 1)r 2, (3.18a)

Fi =[rWi, —4Wix,,—Wix,,)] ‘
X26(146r)~%~2, (3.18b)

K;Wpa - 32Qﬂvpa aﬁxaB9 (14 or? )~ —42, (3.18¢)

IV. CONCLUSION

In the previous section, we have obtained two (spheri-
cally symmetric) essentially different solutions of the
theory defined in Eq. (1.10) and for an eight-dimensional
Euclidean space-time and a gauge group SO(8). Let us
stress that the way we have produced the solutions is
based essentially on group-theory arguments, decomposi-
tion of irreducible representations, etc.

The solutions (3.15) and (3.17) are very like the so-
called (four-dimensional) instanton;’ indeed, both are ex-
pressed in terms of rational functions, they are invariant

under the full rotation group of the space where they are

living (spherically symmetric) and both describe some lo-
calized object with most of the action concentrated
around a single point of space-time.

As expected, trying to relax the hypothesis of spherical
symmetry in the above section makes the equations much
more complicated. One more solution can be obtained,
however, by equating the tensor F3° in (2.8) to zero; it
takes the form

p=(a+b,x,)"", 4.1)

where a and b are constant. The function p is constant on
the family of hyperplanes parallel to

bux,=0 4.2)
and singular when
byx,+a=0. 4.3)

More interesting would be the discovery of a superposi-
tion principle like the multi-instanton solutions® (in four-
dimensions). This is under investigation; however, the fol-
lowing observation could be helpful. It is the fact that
our solutions are still solutions after the substitution -

ri—(x,—fu) (%, —g,)

. (4.4)
Xop—> 72X —fo0—8a)(2x3—fp—8p)
J
aﬁyB—E[Wa » yS]{'{- s
L
QaB‘yS,paZTEH[Wa »Wyp]+860+[W78’Wap]+8ﬂa

Byd

‘—[ WaB’ W8p1+8'yo— [ W’y&; Wﬁp]+8(10'] +(P’0)] —Tr(P’U) ’

For the self-dual solution (3.15) the above substitution is
an obvious redefinition of the integration constants; for
the anti-self-dual ones it is more subtle and it enlarges
somehow the space of the known solutions.

Finally we would like to stress that the weaker suffi-
cient conditions (1.15) are less amenable to group theory
as the representations appearing in R and R do not obvi-
ously split with respect to A.
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APPENDIX
In this appendix, we collect some definition of tensors

appearing in the text. First, the seven antisymmetric ma-
trices A can be defined by the equations

Fg1 +Fp+Fus+F36=0, (A1)
Fgp+Fi7+F35+Fea =0, (A2)
Fg34+Fqy+Fs;+Fg =0, (A3)
Fya+F37+F51+F=0, (A4)
Fgs+F76+F 4 +Fp;3=0, (A5)
Feg+Fs7+Fi3+F4,=0, (A6)
Fg7+Fes+Fy3+F,; =0, (A7)
int;oduc%(% in Refs. 1 and 2 and equivalent to (B
AfF,,=0. (A8)

Then, the 21 antisymmetric ) matrices are defined by

QP =3 (A AS — AL AL (A9)
completing the full basis of the algebra of SO(8) [see
2.2a)]. The definition of K in Eq. (3.4) involves several
tensors entering as Clebsch-Gordan coefficients. The
symbol ¢ denotes the sum over the cyclic permutations of
the indices written under the summation sign

(A10)

(A11)



994 Y. BRIHAYE, C. DEVCHAND, AND J. NUYTS 32

2(2[ Wa;u Wyp] +83v58¢7

1
TaB‘rS,/,wpa =724
: Brd

- [Wa ’W‘yv]sﬁpaﬁa'—[Wap’Wyv]+8508&p) l—(aaﬁ) —(7,5)

+ (u,v) [+ (p,0) |+ (uv,p0)

The gauge indices have not been written explicitly. In
(A11) and (A12), terms like +(a,B) [ —(a,B)] mean sym-
metrization [antisymmetrization] with respect to the in-
terchange of o and 8. The symbol —Tr means that the
usual trace terms have to be subtracted in such a way that

—Tr(u,v,p,0) .

(A12)

r

all relevant traces of the tensor are zero.

It is easy to check that the S and T tensors are self-dual
and that Q is anti-self-dual with respect to their indices
afys.
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